

Daily Tutorial Sheet-2	Level-1
------------------------	---------

16.(C)
$$K_a = K_{a_1} \times K_{a_2} = 5 \times 10^{-15}$$

- **17.(A)** NaCl is neutral salt (salt of strong acid HCl & strong base NaOH). Hence pH of its solution is always 7 irrespective of its conc.
- **18.(D)** meq of base (10×0.1) > meq of acid (10×0.05) ; Hence pH > 7.
- **19.(D)** Milli moles of $[H^+] = 2$, Milli moles of $[OH^-] = 3$

$$pH = 14 + log [OH^{-}] = 14 + log \frac{1}{500} = 14 - log 500 = 11.3$$

20.(C) Final (H⁺) =
$$\frac{100 \times 0.015 + 100 \times 0.005}{200} = 0.01 M$$
 \Rightarrow pH = 2

21.(C) pOH =
$$\frac{1}{2} (pK_b - log C)$$

$$\alpha = \sqrt{\frac{K_b}{C}} = \sqrt{\frac{2 \times 10^{-5}}{10^{-3}}} = 0.14142 \ \left(>0.05\right)$$

So, we can not use the standard formula. Solve for $\,\alpha$.

$$K_b = \frac{C \alpha^2}{1 - \alpha}$$
 and then use pOH = $-\log(C\alpha)$

- 22.(A) Combination of strong acid and neutral salt is not a buffer
- **23.(A)** Adding CH₃COONa to CH₃COOH will suppress dissociation of acetic acid, resulting in decrease in [H⁺] and hence pH increases

24.(D)
$$pH = pK_a + log \left[\frac{conjugate \ base}{weak \ acid} \right]$$

- 25.(D) This is a case of hydrolysis of salt of weak acid and strong base
- **26.(D)** Basic buffer has pH > 7
- **27.(D)** Buffer capacity is maximum when [Conjugate base] = [Weak acid]

28.(D)
$$pH = 14 - \left(pK_b + log \frac{[salt]}{[base]}\right) = 14 - \left(5 + log \frac{1}{0.1}\right) = 8$$

- 29.(B) Na₂CO₃ on hydrolysis will give NaOH and H₂CO₃. Resultant solution will be basic.
- **30.(D)** Salt of weak acid & strong base HCOONa, KCN is basic. Salt of strong acid & weak base $C_6H_5NH_3Cl^-$ is acidic.

VMC | Chemistry 99 Ionic Equilibrium